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FOREWORD

The research on which this report is based was performed by the author
at the Co_rnell Aeronautical Laboratory, Inc., Buffalo, New York, under Army
Contract DA 44-177-TC-439, Project Number 9-38-01-000, ST 902. The
Transportation Corps, U. S. Army Transportation Research Command, Fort
Eustis, Virginia, is the monitoring agency. This report represents part
of a research program, which is devoted to the investigation of several specific

problems associated with STOL/VTOL flight.
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scalar potential of %,
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vector distance from 2t to Jt’ (ﬁ:ﬂ-—-ﬂ/)
Cartesian coordinates of point L
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radius of large sphere on which 4/ vanishes

radius of small sphere in which ¢  is not analytic

surfaces enclesing all points of field 2 whereV -2 and VX

are not zero, respectively
radius of smallest sphere enclosing 5,
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pressure
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L INTRODUCTION

There is at present considerable interest in the aerodynamic performance
of t(}?e vectored slipstream type of STOL aircraft. To a large degree the per-
formance of this arrangement depends on the aerodynamic interaction of two
systems, the wing and the propeller, and as such it constitutes a formidable
problem in flow analysis. In the interest of getting wing data, one simplifying
approach consists of neglecting the propeller, per se, and substituting for
its system a jet or slipstream of indefinite extent., The analysis is thereby
reduced to one of an isolated wing in a nonuniform or rotational flow.

It is usual in this kind of analysis to effect a further important simplifi-
cation by specéfying an ideal jet and postulating, on the basis of small disturbances,
that the cross-ﬂsectional shape will remain essentially unchanged. Under such
conditions the problem is related in some respects to that of a wing in an open
throat wind tunnel - - a scheme that has been examined extensively by the
method of images.

The latter approach has been applied to the wing-jet problem by a
number of investigators, whose contributions can be conveniently grouped
according to the parameter, jet to main-stream velocity ratio. For values
of this parameter close to unity, the problem was investigated@)by Koningl,

Franke and Weinigz, Ruden3, Bausch4, Kyewski and Vandreys, Vandreyé,
etc. For large values we have the developments of Glauert7, Stuper8, Pistolesig,

0

Baranoff1 , and others. The more recent contributions, namely those of

Rethorst1 1, and Ribnerlz, seem to apply for all values of the jet-velocity ratio

as does the work of Graham et a113.
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The present study was initiated to investigate the effects of jet curvature

(are_inpeshgabed)
|, on the premise that at higher angles of flow deflection, this factor should have

an important influence on wing lift. The jet boundary is hewve rega@ded as a

vortical layer, as is also the wing surface and its wake. The jet vorticity
distribution is determined subject to the dynamic equations of rotational flow
which are applied in a thin region at the jet boundary. This approach leads to

the consideration of jet trailing vorticity or M?ééa)l—}ed "iéeconda.ry vorticity"i

which occurs, as shown by Squire and Winter14 and also by Hawthornels,

% in certain curved nonuniform flows,

Jils
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IL. INTEGRAL REPRESENTATION OF THE GENERAL VELOCITY FIELD
w»

To show clearly the present approach, it will be convenient, first, to
recall certain general properties of vector fields, and how they relate to
steady-flow fields of an incompressible, inviscid fluid when the flow field includes
free vorticity., We begin with the following theorem which is proved in Ref. 16.
Any continuous vector field, 4/ , defined everywhere in space and vanishing

at infinity together with its first derivatives, can be represented as the sum

of an irrotational vector field, U, , and a solenoidal field, /w'z . The
representation is unique except for a vectorial constant. Thus,

Y =, Al (1)
where

VXx w =0 (2)
and

V-w,;=0 (3)

The application of this important theorem to the study of wing-jet flow
fields is not precisely correct. The steady-flow field about any body which
sustains a resultant force due to fluid pressure will include a vortical wake,
which, along with the velocity field, extends indefinitely if the fluid is inviscid.
Such flow fields apparently do not meet the requirement imposed in the theorem,
namely, that the vector vanish at infinity. Nevertheless, an important insight
into flow problems involving free vorticity, as is characteristic of jet flows,
can be attained from the following considerations,. based on the more restricted

vectag fields for which the theorem strictly applies.
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Lamellar Vector Fields

It follows from Eq. (2) that 24, can be represented by a scalar potential, ¢

such that
A, = - V¢ + const. vector (4)
and hence ¢ satisfies the inhomogeneous potential equation
Vi =-Ving=-V-as (5)

Consider Green's Second Formula

[moin-n VM)A = [(M -

(6)
M) of o

where M and N are two scalar point functions, continuous in the first
partial derivatives and possessing second partial derivatives, and A is the

®
outward normal seen from the region of integration. Let

y=L (7)
where
7 =|7|= |-at'|

In rectangular coordinates

7=y =€)+ (y-m)*+ (2 - C)"

where % , /7 , & are the coordinates of point 47 , and s s TZ , C

are the coordinates of point ILI . So defined, /V is harmonic, i. e., satisfies
12 = g
VEN=0 <

everywhere except at JL =0 and hence, except at this point, satisfies 21l the

necessary differentiability conditions everywhere. The volume integral in Eq. (6)

4 AI-1190-A-6




is taken in the J’ system e the region enclosed between a very large
sphere of radius /& and a very small sphere of radius € , with centers at
the point JT =0. Now let M be identified asn ¢ of Eq. (5) subject to all
the necessary differentiability conditions.

Equation (6) then becomes, on the basis of Eqs. (5) and (7),

A%(Y-M)dr=l[¢. 3(j> = ,% %%]c/a’
i S
¢

In

The second integral on the right of Eq. (8) reduces to 477’¢ by virtue of the

assumed continuity of ﬁ . Hence, Eq. (8) can be written
3/
o BB R e oy [.%—p__/ 9d]

Equation (9) is an expression for the potential at points within A  in terms of
the divergence distribution and the values of both ¢ and its normal derivative

on®the boundary.
=

For our purpose we now specify the vector field 2/ to be such that the
region, or all the regions, in which V -2/ is not zero, are finite in extent
and can be enclosed within a surface 51

In Equation (9) consider R to be large enough so that if A, is the
radius of the smallest sphere that encloses \5'1 , then '

R > R,

In the region between the spheres_ A&  and | _5.1_

Veawr=0

5 AI-1190-A-6
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and therefore ¢ in this region satisfies
2
vig=0
Since ¢ represents the potential throughout space of a suitably restricted

spacial source distribution, it will vanish at least as

/ b/
R, TR 1T RR,

This situation assures that the second integral on the right-hand side of Eq. (9)

vanishes for sufficiently large A . It should be noted that the corresponding

velocity field also vanishes at infinity. Thus,

/
=g | F(V-)dr 10)

It is shown in Ref. 17 that % , as given by Eq. (10), and its first derivatives
are in fact both defined and continuous everywhere in the field if /. is
bounded in extent, as was assumed, and is at least piecewise continuous. The
higher derivatives are also shown to exist provided the divergence distribution

satigfies a Holder condition.

Solenoidal Vector Fields

Let

Uy = Tx A + donst. vector -

with the condition

V-A =
A=0 -

6 Al-1190-A-6
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By forming the curl of Eq. (11) and applying the vector identity
®
VxVxA=—V2_A+V(V:_ﬂQ (13)

for which the extreme right term vanishes by Eq. (12), the following is

obtained

ViA==-Viw, = Vxw (14)

Hence, like ¢ the components of A satisfy the inhomogeneous potential
equation,

Again, if the region designated Sj , in which VYV X4/  is not zero,
is finite in extent, then it can be shown on the basis of Green's Second Formula

and the harmonicity of the components of A  exterior to 52 that

iy [ 4 e )7

_ From Eq. (15) one may observe that each vector element of rotation, Vx|,

contributes a vector element parallel to A . However, it can be shown,

since

V-(VX/w)= 0 (16)

that the net effect of all radial components of VXA# (that is, radial from the

position of A ) va‘nish. Hence, more concisely itis the tangential component

of rotation-element that contributes a net vector element parallel to A
Evidently all the conditions concerning the necesgary functional continuity

of the distribution V' w apply to the components of Vx/w' as well, and in

addition the condition imposed by Eq, (16) must also be met. The latter condition

7 AI-1190-A-6,




implies that the rotation distribution itself must comprise a solenoidal field.
Further consideration will be given this fact later.
)
Equation (1) can be expressed in terms of spacial distributions of the

@)
divergence and the rotation on the basis of Eqgs. (4), (10), (11), and (15).

A= = / Vﬂla[2—+ x/vx"’ dT + vector const (17)

S (V- e
477’ = dT 477, —J‘a_— d T+ vector const.

where

N=Vxw

For any given vector field,” a7 , which satisfies the conditions of the theorem,
the distributions V-2 and { are furthermore unique., (See Ref. 18: Chapter

IV; Section 20.)

Solenoidal Flow Fields

In steady-flow problems only certain information concerning the flow
field is given; e. g., the conditions far upstream, the geometry of solid boundaries,
Zand the trailing-edge conditions. The flow field must be determined from these
data alone, and its establishment involves, in essence, the determination of
appropriate distributions of the divergence and the rotation, Very little is
known concerning distributions, however, except on surfaces. Egquation (17)
offers a means by which surface distributions can be established for certain
practical :)roblems.

As pertains to steady-flow fields of an inviscid, incompressible fluid,

Eq. (17) requires some further consideration in view of the conditions imposed on

8 AI-1190-A-6




the vector field in connection with the derivation.

First, the distribution of rotation in the steady inviscid flow field about
a lifting body, in contradistinction to the condition imposed in the preceding
development, extends indefinitely in the wake. For our purpose, Eq. (15) is
presumed to apply generally, provided, of course, the integral exists.

Second, since the fluid is taken to be incompressible, the entity of flow
divergence never enters into the actual field of flow. Rotation, on the other
hand, will certainly be present in the wake if there exists a resultant force
on the closed stream surface of a body. Provided the fluid is incompressible,
the former statement permits us to formulate any steady-flow field which
possesses a continuous velocity vector (hence one which vanishes on the body
surface) on the basis of solenoidal field concepts alone.

On the other hand, if the fluid is also inviscid, in which case the ‘;élocity
will not vanish at the body surface, then the flow field must be continued
analytically into the region within the body surface in order that it meet the
requirement of a continuous vector field. Under such conditions it may be
observed that the flow field as a whole does not compr ise a definite vector
field. But this situation is precisely the one which again permits us to treat
such flow problems on the basis of purely solenoidal flows by so defining the

analytically continued flow field.

&

Since we will be dealing exclusively with solenoidal flows, it is essential
to recall that the rotation distribution is subject to certain basic constraints.

First, the divergence of the rotation is everywhere identically zero

V'(szw>=0 185

9 Al-1190-A-6




Therefore, the rotation vector field itself c%mprises a solenoidal field. The
same can be said of the rotation of the rotation vector, etc, Second, rotation

is a convective property of the fluid particles subject to a dynamical requirement
which can be derived from Newton's second law. Thus,

D - P 19
S et e

i

where ¥ is the flow velocity (Vw-i- /w)
y 4 is pressure

F is extraneous force (per unit volume)
4y

/9 is density “.
By operating with the curl on Eq. (19) and applying Eq. (18), the £ollowing

»

form of the Helmholtz equation is obtained

28 - 1 (n.9)v

where

n = vxy :

For steady conditions the preceding equation becomes

(V-V)ﬂl=(ﬂ.-\7)\\/+ ——\—%—f (20)

Equation (20) governs the rotation distribution. A few elementary solutions of this
nonlinear system have been determined for the condition of force-free flow:

one relates to a circular jet in a parallel stream. Another obvious solution

for trailing vorticity is

() = const. -V

10 : AI-1190-A-6
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On the other hand, integration of this equation along an %rbitrary streamline .—)
leads to a relationship between the normal and tangential component of the
rotation vector which will prove to be of considerable value in determining
the vorticity dist;;bution in the vortical layer of a deflected jet.

Consider the line integral of Eq. (20) along a streamline whose vector

element is designated da.
J[(v-9)n] ds =/[n-V)V] . do + JIEE . do 20

Since VY is parallel to (/40 , the first term on the left may be rearranged

as follows

Jftv-oin]-do= [[v(&s - )a]. o
= vie - 4
AL LIETEYIRT )
:/V'féﬂr “/\/C} % C)da

where ﬂ., and ﬂA/ are respectively the tangential and normal components of
ﬂ referred to the direction of the streamline element, dﬂ . The operation
involving the vector derivatives along the streamline, which lead to the last
expression, is carried out with the aid of Frenet's formulas (see Ref. 19).

Here, 6'/ , is the First Curvature or Flexure of the streamline; its reciprocal

11 Al-1190-A-6
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is equal to the first radius of curvature, ,ﬁ, . The vector (¢ is a unit vector
perpendicular to the streamline element CZ.A and in the direction of .»A_
The first term on the right-hand side of Eq. (21) can be developed as

follows:

/ﬂﬂ -v)w] da =//(-ﬂ-D.T°V)\'//7¢A +/ﬁﬂ~' V)“j‘ &)
=/f2*T¢ V#//f_l;v %7”71 . V) Y/‘ da

=/fzrdv+/m§{_%’_ il .

= /Ny dV+ ./'2,,,-62{/—":— da

where dﬂ/l/ﬂis the unit vector in the direction ﬂN :
The preceding developments substituted into Eq. (21) give, when [F

is taken to be zero

/Vc/flr—/\/c,ﬂ” (rec)da=fDrdvs [0, LV do

r /c[@%})= —‘\0/-;’—%7‘/—6{4/-}‘/——&—\/6\"/’:2 (m.@)a,/,v

o Therefore "
E 3

. &_:/_Q_M dV 4 ¢v(n )/ d< + const. 22
"4 V2 /dn /
Equation (22) is an expression for the tangential component of the rotation along
a streamline, in terms of the integral along the streamline of the normal component
of rotation. The.tangential rotation, [) r » includes both the initial value of this

component and the accumulation of the "secondal"y" rotation which is known to

12 AI-1¥90-A-6




occur in certain curved nonuniform flows.ﬁThe latter arises when a fluid element,
S

which has a component . of rotation normal to its projected streamline, moves
along a streamline whose geodesic curvature on the Bernoulli surface is other

® than zero.

\m

13 AI-1190-A-6
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II1, DEVELOPMENT OF THE WING-JET LIFTING SURFACE EQUATIONS
o

We now apply the preceding developments to the formulation of the wing-

(0]
jet problem for a uniform, circular jet under the conditions of small deflections.

The integral relationship for the disturbance flow field is given by the

solenoidal part of Eq. (17)

o= /-ﬂ—-——a/r (23)

Let S=(0 define the wing surface. The unit vector, normal to the surface,

will then be
VS

T

and the condition that S=(¢0 be a stream surface is

(Voo 20) = le’ =0 (24)

where Vco is the uniform free-stream velocity.

The condition at the wing surface is, therefore,

/zxﬂ S
Vo + VS—VS - m/ wXfl - s)

where

and JL,, are points on the wing surface. Equation (25) can be arranged so that
the integral is taken over three regions where the rotation is known to exist; the

wing region, the wing wake region, and the jet boundary region. Thus

14 AI-1190-A-6




477'6/,,'V5'—'VS'/ Ty X A2 GZZ"'#VS/ gxﬂww 47
w

Ry
+ps. | AyxRg i (26)
T

Equation {(26) may be developed into a more useful form on the basis that all
regions of rotation are surface-like and hence can be represented by vortex
layers. For this purpose, it is convenient to introduce a Cartesian coordinate
system with % in the direction of Voo’ /7/ along the wing span, and Z
vertical, as shown in Fig. 1.

The wing is considered of arbitrary planform, but without spanwise twist.

In the range

L L _%sa,*s_g_‘
let its surface be represented by
S=0 =2z +f(x) (27)
Then °
P00 %:o, %_Sx—:i ’ (28)

With Eq. (28), the term on the left-hand side of Eq. (26) becomes

AT Ve - VS & AT Vio £'(X) =

and each of the terms on the right-hand side can be expressed in the following

form

15 AI-1190-A-6




¢, [ L XD o oy, by =)o (=-£) 0

(-8)M1y=(3=0) 0y =
/A [[(%‘5)2+(7.-‘7)‘+(z-@‘)2 %]c/é‘dwﬁé Rl

If the local surface inclination, #/(X), is everywhere small, then the wing

and wing wake terms can be simplified and combined to give the usual su'.rface
integral relationship for downwash from lifting surface theory. Thus, for the
wing and wing wake terms, the first triple integral term on the right-hand side
of Eq. (30) can be neglected in comparison with the second, the individaul terms

£tx) o

Therefore, the first two terms on the right-hand side of Eq. (26) can

being of higher order in than those of the second triple integral.

be represented approximately as follows

VS IR rivs.[EarPun gy

w w

S _/: /: %l )y, o

V4

[ 8+ (-0 T% [
_ [P (0w y
4 /fg [ex-8)2+ (- Sy

where
Yy =/ﬂ74¢
?’x :/j[x cﬁ&

16 AI-1190-A-6




The terms on the right-hand side of Eq. (31) can be rearranged into the following

form 5
/%/%_(%-é)wa‘@c‘%_/%/” (p-1) 7y d&drn
g g [ YR Ly S [e8) G

Partial differentiation of the first term above with respect to W and the second

term with respect to, & , together with the divergence relationship

S Oy . _ 37y ¥ (32)
95 PAY)

yields the following e.xpression for Eq. (31)°

A xR 77 [
[ s Tt

W m”_c ww W
= ':é.' 2 (zz_g)z (7_)7)7_ / 27/ (33)
/-"— ¢ S St

[
3 ; /7-’;-/—(-&4'6) —f.,(—k,,—e)//y/f,?,) + /?—;(a+e)-zzﬁe,-e)2/¢-'€y¢5—
e ([ (8N TEE)TF (g7 R)* (Z-E)V ) +(y-R)*
It should be stated concerning Eq. (31) that we anticipate a discontinuity
in 'Y,(/, at the wing-jet boundary. Equation (32) therefore does not apply at
such points and Eq. (33) is developed in that light.
Consider now the third term on the right-hand side of Eq. (26). Its form
as given by Eq. (30?‘;can be expressed in cylindrical coordinates as follows,

with the x-axis of the two systems coinciding.

17 AI-1190-A-6
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Let

n

LIRS
"

n cos V& = 1/ ¢os 12
5 o Iy ¥ (34)

N, = 0N,y cosY + N, snY
Ay ;-ﬂy,S/njﬂ +0, cos‘q

and therefore

VS - fﬁv;_zxgﬂ d7 = f’(x-)fff[(ﬂ eos(P-P-n) () y-nt s/ﬂ(?/‘l’?/)ﬂru_Z/L’d/c?/;//é’
W -8 /"(x_a)z.,. h* ()% -2 /L/z'cof(i/‘@/ %

_[‘(7 "$> (A sin Y-Lncos ) - /L(cos‘ﬂ’-/z’c'a; Z/).ij , ., , [35)
3 fff Z?t-g)z +n*+ (/r,')"— 21’ cos (zﬂ'—;a) % R J? 28

Equation (35) will be simplified under the conditions that the jet is

initially circular and undergoes only small deflection and cross-sectional

distortio;ﬂl. The jet rotation, ﬂJ- » will in that case be essentially in the region
Vo equals a constant, A, , and terms containing —Q/z can be neglected.
We may write
) 7’”’ :/ﬂv CL/ZI
= /
Tx f_(?.)( d/'b (36)

On this basis, the expression, for the downwash on the wing surface, due to the

jet vorticity, becomes

18 AI-1190-A-6




e M T 4
. .

1o 2f
A\VA anXMJ (Z't’ R, F/(x f/ (?WJ'V-Ra))’wa’t/a/g a
! [(x-8)*+ 4> +R*- 2y Ry cos Y] 72

e ‘/'+oo\/‘2'7’['(¢ ) (T,,Js'm#’) (4 - Ro cosy) f] dffo/é (37)
Z?ﬁ! &)? ¥-3;2-+'/? = - 24 R, cas?ﬂ}7%4

where the wing surface is taken to lie in the plane 2#=0.
To a first approximation, ’qu , in the first term on the right-hand
side of Eq. (37) may be taken to be the constant value of jet vorticity far upstream,
’f' , in which case the expression can be integrated at once to give

ro (4 w05 Y- R,) dYd&
R 6 Y@// / [(X_&)z+ 72 + R, % nyo w;;f/%

- ; 1477 fr g L R,
- _f()()}:;‘/’ + 27 for ,y, = R,
. 0 for /y/ -> Ry

i

(38)

The other surface integral on the right-hand side of Eq. (37) can be
developed by integration by parts allowing for the fact that ?/'Z)’ will be discon-
tinuous at the wing-jet boundary. Thus, partial integration of the 'J/,U/term

with respect to ? yields

teo L2 _(x_§)Y, sin P LPLE
R, _ Jod
/ / [()(-&)zf'/%z-f—ﬁoz— 2%/?050:?/3/"

(39)
I8 (-8) [ Tulirr€) = 2 (7€) Y€)= V(2 17-€)
Le % [ /(- 6)% +yrRI" /(&) ¢+ (3-RJI%
/2”’97&. (x &) / /f ()
Vix-5)2 74 F R =2y hyes P V) —s)‘*é; DRy
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where use has been made of the fact that

T (=€) = 75 (€)
7, (20-¢) = V(rte)

and also of the condition 4 J

RS ___L .3Yw

5 Ro Y

at appropriate points.

Integration by parts of the Tx term on the variable &  gives
R/*‘” T _(y-RowasP)Vy dYd &
Vew Jo [(x-&)"f 32 rR2-2m4 %, “57]3/"
= __/?"/”’w (yp-Ro s P ) U5 (>) d of
0 [’71 #R,*- 24y R, s Zf] (40)

— ,@/*":'/‘W (4-Ro 55F) (x-&) ﬁ;g dyd&
L (zy*-ﬁ,@”—z’%_@”"?)‘/(1—5)‘7"%21“@2—2@‘/@""Zja

The total contributions' of the jet vorticity to downwash at the wing surface,
as given by Eq. (37), consists of the sum of Eqs. (38),(39), (40). These relation-
ships, together with the wing vorticity effect as given by Eq. (33) and also
EcllF (29), substituted into Eq. (26) yield the following expression for the total

downwash on the lifting surface.

W
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/ 'Vo RO
b (V 4k

N
(x-&)

)% (y-p)*
(x-8&)

oy >K,)

e

Y

)

S/
- {Y-Ry005) fyleo) dp

Wy ]
p DYZ d@;dpz A,

M’/ / 7 ¥ -8) ¢4

cos Sﬂ {f (41)

"7"?02‘-—2?« <,

(x-8) a'-/-ﬂ/ 4R, 224y R, cos @

Y (4-Ro ers7p)

(x=8)* + (4-%)*
AD/”/’ K'/?o) (’éfﬂ?«:)
% (-ENG-8)* +(4+R)*

A D/u* (’/7’) (X'é)
AV (-8)*# (yrR,)*

727,.%2_27@ eos

PAZL
7}
AVy (R) (4-R,

(X- &)/ (x-8)* 14 - R,J*

AT (0) (x-)
“g//r— §)2+(y-Ra)* j) 4e

T AV ((R) = Ty (Rete) - Ty (Rie) '
Ay (#R) = Yy (+R+€) = ¥y (R -€)
My () = Y (re€) = ¥y (7-€)
M (0) T W (€ T % (em-€)

The jet trailing vorticity distribution designated ‘XX

in the above

equations can be determined approximately by the use of Eq. (22), which applies

along streamlines within the jet vortical layer.

not subject to body forces, we have

Ny _ < N LV
i d n

21

Along any particular streamline
C’; 4 (M . C})_/d‘d/

(42)
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It can be shown that, in the absence of body forces, the velocity derivative

in the direction o«f N, which is both normal to the streamline and tangent
to the Bernoulli surface is also equal to V- C, (N‘C)ﬁ where d, (177 . C) is
the geodesic ;:urvature of the streamline relative to its Bernoulli surface. In

Cartesian coordinates, the flexure, 0', , may be expressed as follows

= l/a-"{i)z oLy z'd"a)’-
'~ V(zas) T da42 * 4 4*

For streamlines curved only slightly from their original X direction,

a4 is approximately cé)( , and the above expression can be represented by

= ty ), fd2z |
4 d,z,z) +_(¢z‘b) (43)

Furthermore, for small values of jet deflection and cross-sectional distortion,
M «C can be evaluated on the cylinder /?a =const in which case it can be

expressed as follows

L2z
N c = ms/ZZ-,L sﬂ-r,w'/_i’L’;_/
z & (44)
A= ? :

where Z—f’ is the azimuthal coordinate introduced previously.

Under these conditions, Eq. (42) may be written as follows

0 "0 /) A v
—VZ - 2 | VN S0 Zfﬁ + cos Zfa#/% (45)

If, in addition, V  and -Q,v are assumed not to vary much along streamlines,

the integration can be performed and one obtains
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o (G)
. _O.TZ Zfl” — Sn ‘Z:z -+ cos _cﬂ-Z—
/ a+ 2 c (46)

Integratipn of Eq. (46) across the jet vortical layer yields an expression
for the secondary vorticity. Here, we apply the Second Theorem of the mean

-

for integrals to obtain
7—,—-’- 2 Y/V - sin ()ﬁ—i—% + cos pr—%éﬁ-z:— (47)

where def / and 67;/ are appropriate mean values of the streanfline
by dy PPTOP
deflections across the vortical layer.
The Y,( component of the jet vorticity can now be determined for the
condition of small deflections by taking appropriate components of 'Yr and

YA/ ; the result is

Ty = ‘X,v/ /:sm ?% + cos ?,V%.lz:. (48)
4 .

It may be noted that the magnittde of 77( in the jet vortical layer

depends on the product of 7;/ = \(f-* V/ and the mean deflections of the stream-
0

o0
lines which are of order /”{y) . For small values of VJ - Vao , 1. e. of
order \/00 f’(x) N is therefore of higher order than the wing

vorticity terms retained in Eq. (41) and accordingly such terms can be neglected

in determining first-order effects on the wing. On the other hand, the lift
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Vir-Veo

Voo
Ref. (1), must necessarily be second crder in terms of wing angle - of-attack.

o
®
The mean deflecticns Z:y/tf(?( and J_é/[ll/ may be expressed in
£

terms of the normal disturbance velocities evaluated on the jet vortex sheet.

distribution, to a first order in small values of , as for example Koning,

In that case® 9 -

dap - 2.(/% ,uw;) dz _ 2 Y, +rwy
av Voo + V5 Z Vo + Vir (49)

*

where A, and Wy are due to the jet vorticity, and /,, and W, are due

to the wing vortex system.

mr
(cm?}’—sm'l/){ ()( wsZﬁ(y/ o/
[’“eﬂs(@ﬂ/-?f’)]ja/" _/ et

o 7"727?’ — (-8 )sin TP Wy — R (205 A= cosZ/) zfdé
(x8)r 28,2 f1-cos CotP) T o

¢7r

= M/ &R
w— -4 (1/ Q) +R2~ 28y msv/,k)?‘z/a/z_

/ / [Co-8) Wy (R cos -7 )Yy ] & v
e [Ce-8)*+ R*-2 R yess vy ) P

Substitution of Eqs. (49} and the first two of Eqgs. {50} into Eq. (48) yields

the following expression
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V()= Y R* /”’// ws (=Y)] 7 (8, ) d gl
m(vw+f) % o (,( £)2+ e[ ws(q,«/zy)}% )

—Tw R / o )sm () ¥, (8,80) d2pal &,
ot ls)-m Jo J(X-8)2F 282/ cos /Z”@/}%

(51)

-2,7%%;/,,7)/ + za/vzwwcas?}’
Voo+l/‘7 VmAf Vir

-

Let

(6 %)+

(-x)+ =~
Y

Ve (6,9) = ¥a (x,9) +";a‘g<
b @ VDt e

Y

Since Yx (X,Lf)is symmetrical about the jet periphery, the contribution of the first
term on the right hand side of.Eq. (51) depends on the higher differential coefficients
of the Tavior expansion than the first, and therefore, according to Eq. (48) on
the derivatives of the streamline deflection higher than curvature, The contribution
of the second term, however, depends on the first differential coefficient of the

,/}/1;/ (g)ze)expansion. It may be noted that even this coefficient already depends on
the product of streamline deflection and curvature. For small values of deflection,

curvature, etc., Eq. (51) may therefore be approximated by

e X _ —ZY,LVG v, s10 V- + 2{'&"0 W cgs T~ . (52)
X . \/3— + \/CO \/oo 1 \/T
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The last two of Eqs. (50) can be expressed as follows

16)
= , r//77/°’ (x- 5)
/ /, 2y [b"] T fire)t 5 ey
- = ____/_ —7: (x - éa) : [T’V/(‘ﬁa"f)'7@/@/@—6).7&(/*051!’)
v [ (-84 R2m*V] [ [ x 8)2s 2R, % (17e0sY)

Z
(53)

[T (R4€)-7 (Ry-€)] R (1= 2052f) 5
| )/(X—Q)Zf'f/?ozf/—cos‘!f)

// n’% Ry s -y [/+
b -

Z?x é) + 524 R, 5//7?{7 ?
Z_(% &)+ K, L.Cm"?/“‘]l/(xg +sz

where Z = -ZR\Q 0057}"/"7

Upon substitution of the above expressions into Eq. (52) one obtains

b .
s = 2 (/? cos'&/“’)
1, (oxte) - / an (Geget) g,

¥ c
___/_ 2 ‘7 ?Yg;: (Z/—{‘;) v
4WA e M gzﬂx‘&)zf-Zf/Vz [&*7 s ¥
2 z

o

(54)

#
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Fa (Z’z) (Ro coszﬂ/_y)wsvj) 6{$¢7
(7(- é)" + Roz sin% Y
© e ®
Roest [P (24) [y CRote)-Yy (R-€)] (170527
i = Z
7Ly RTHREETY [ G B) 2R
2
[Yq/(ﬂafé) ry«('? 6)](/ caszf’) L
V(-8)2 4 2R,2 (1-cos ) P
For large values of % , Eq. (54) becomes
L ] -g ) v’)
(R RS L BV E
27y, -5
0

and the derivative of Eq. (54) with respect to y 4 yields

Voo + Vi 7'{ ){"f NI
(27) b

v eo z,’-{Rocosﬂfd’-vwsu)
[R" K SUJ"- (Y-8)2+ R,2sin® ¥ ][(7‘ g)+b]%

26 (2 -8)" (R, cos® V=17 cos 22) d&dy+---—-
e sz/ ’7

(56)

By considering once more the rotational flow aspects of the vortex
sheets, it can be shown with Eq. (20) that if the wing lift is considered to be a
constant across the jet rotational layer, there will beno shed vorticity arising

°
at the wing and jet-boundary intersections. Therefore
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AYoy (#R)==— AT, (0)

. (57)

and AY,% (‘Eo) = A{v, (Tf)

Equations (41), (55), (56), and (57) complete the formulation of the
lifting surface problem for a wing-jet combination for the condition of small
flow deflection. ~Since the system of equations appears quite ft;rmidable in its
present form, one must, as in the case of ordinary lifting surface theory,
resort to approximate methods, employing expansions that are suitable for
special classes of configurations in order to obLtain numerical results. It
appears that wing aspect ratio offers a suitable expansion parameter for this
purpose, since the limiting cases of both high and low aspect ratio yield great
simplification in ordinary lifting surface theory which is implicit in the present
p roblem.

This course has been pursued for the case of a high aspect ratio wing and
is presented in the Appendix. For simplicity, jet curvature terms have been
neglected., The lifting surface equations given here in that approximation,
reduce to a couplet of integral equations, the same as given by Graham et al.
in Reference 13 but with somewhat different expressions for the image strength
factors. In phce of the quadratic expressions (J{yz— \/a:)/ (\/J—z—f—' V:o) and
ZV,-V,,/(\#*VO:) which occur in basic image analysis of a perturbed circular jet,
the present development obtains linear expressions ([/J.— Vao)/(VJ’ f-[/w) and
ZVw/VJ' + Voo respectively. Numerical results, showing the effect of these =
differences are given in Figure 2 where a comparison of the wing lift increment
due to the jet is made with other existing theories gnd experiment for one set of

conditions. The present developments yield values of wing lift within the jet region
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considerably higher than previous theories and available test data for a nonuni-

form jet. As discussed in the Appendix, this differgnce is due to the approxima-

tions used in determining the mean deflection of the streamlines on the jet

vortex sheet.

"
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IV, CONCLUDING REMARKg
Py .

o
A formulation of the lifting surface equations for a wing-jet configuration

is given for the case of a circular jet experiencing small deflections. Jet
curvature effects are included but jet cross-sectional distortion is neglected.

It is shown that any steady flow of an incompressible, inviscid fluid
can be represented as a solenoidal field with the corresponding rotation distribu-
tion subject to the dynamical equations of rotational flow. A useful streamline
integral of the latter system is derived that gives the distribution of the sEream-
wise component of the rotation along curved streamlines within the jet rotational
layer. This is identical with Hawthorne's expression for secondary vorticity
in nonuniform flows. The flow field of the wing-jet combina-tion is first rep-
resented as a general solenoidal field. It is then specialized, for the case of
a lifting surface and an initially uniform circular jet, to one involving only
vortex sheets,

On the jet sheet both the normal and the streamwise components of
vorticity enter into consideration. However, the downwash effects of the jet
on the lifting surface, with exception of discontinuity effects at the wing and jet-
boundary intersections, can be expressed entirely in terms of the trailing
component of jet vorticity and its streamwise derivative.

With the aid of the aforementioned streamline integral of the rotational
flow equations, an approximate expression for the jet trailing vorticity is
obtained in terms of the wing vortex system. .For small va;lues, the jet trailing

vorticity depends on the product of the initial jet vorticity far upstream and that

component of the local flow deflection which occurs due to geodesic curvature
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of the streamlines on the jet vortex sheet. Its value is a maximum on the sides
of a downward deflécted jet and vanishes at top and bottom with sign such as
to cause upwash within the jet and downwash on the outside.

For simplicity, jet curvature effects have been neglected in that develop-
ment. The resulting system then reduces to a couplet of integral equations the °
same as given by Graham etc in Reference 13 except with image strength factors
altered. Numerical results, showing the effect of these differences, yield
values of wing lift within the jet region considerably higher than previous
theories and available test data for a nonuniform jet.

The approach taken here, and basic developments, lend themselves to the
investigation of other problems involving jet curvature effects. Thus whenever
a jet is turned toward alignment by a main flow, there is as a consequence,
and in accordance with. the general prescription, a redistribution of its vorticity,
the immediate effect of which is a self-consistent flow field both within and
exterior to the jet. Thrcugh the extended influence of this flow field, jet
curvature effects manifest themselves on solid boundaries of wings, propellers,

and other similar parts,
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APPENDIX

% LIFTING LINE APPROXIMATION

. If the high aspect ratio approximation, i, e., l X—g |<< ’/LJ- —)?, , b
which ordinary lifting surface theory is reduced to lifting line theory, is adopted
and applied to Eq. (41) with the jet curvature effects term neglected, an integral
equation is obtained for the spanwise circulation distribution from which numerical

results can be derived quite readily®* Under such conditions, Eq. (41) with Kx ("o)

given by Eq. (54), becomes

) Ky
e £5) [ Vo +4, 80 5 " / Ty
W}{\(&)Zm'f' a’%}ﬂ ] 4, 2’% Py 1?%2 " E,.dJé

r A (v_, or (v—ﬂcost_{’)(&—»zcosw),drzdd (1-4)
VetV " ?rz (y*-2y Reost+R2)(R22p R, cosy+77)

-

2

The above equation, for the case of a flat plate wing, i. e., -f‘w/ [X) =ol , can

be written as follows

7.
.._ _ﬂz_ at = F¢ ;
e Y 4)
where s (2-A)
=2 .Td74/’<R 2 )
F('y) ol,[';w-/— 07?’>R}/ 277‘/ (/”Y]

+ R, (V,-yw\/zfr/-% A7 (4R, eos P ) (R, - -V eosT9) o
e VJ""V”/ ) —% " (471’2 Z%RO”OSQ"'R )@z ZVEocos'q’r)yz) o
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Inversion of Eq. (2 A) yields

2l - _QtLF = F
Yy TV ¥ & / (&-2) %9 V'z+-§_- [4")(3_A)

®

Now
£
2
reg) - / Vg d
-0
z
which, with 14, as given by Eq. (3-A), becomes, upon integration

reg): e ri) -

Equadtion (4-A) with F(’lj«) as defined following Eq. (2-A), is an integral equation
for the wing spanwise circulation distribution, /-7(4’) .

In the expression for F@ the term which is a surface integral can be
reduced to a single integral by performing the integration on 'Cf . Equation

(4-A) becomes therefore for 0< % LR,

[7t4) = n'cx(t/ ﬂ/,,,)__/ sz ’l[’YZ v

o o ,[- i A ]
. /v’ V. )/ ( 2ty -
\ Vo # V p? ) K4

and for Ra</‘j'<‘€—
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— o [ Ve ar (ﬁL d
\%+%) ), g W ‘

Equations (5-A) and (6-A) are equivalent to' Eqgs. (3, 11) of Reference 13, which
were developed on the basis of simple image theory. In fact, if the present system
is integrated partially one obtains Eqs. (3,11), but with different expressions for
the image strength factors that precede the integrals. Instead of <\/-7£-V0:>/(VJ¢+V0:)
and 2 VJ. Voo /(VJ’-}-V‘:) the present expressions turn out to be <VJ RV )/(VJ_-,— Vw)
and 2V, /(VJ‘ + Voo)

The procedure used here for solving Eqgs. (5-A) and (6-A) makes use of
a single sine series expansion for . The leading terms of the series were
determined in the usual manner by solving »~»7L  simultaneous equations which apply
at » discreet points along the semi-span of the lifting line. For this purpose it

was convenient to let /' be expressed as follows

[y)=mrecaVy 54,  sin (zm_/) 0

The section lifts coefficient, *defined as

c -_rVr
. T vt
2RV C
o0
L
L
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can then be written as follows

C’L SN VV]d/
vZ

é A, S1n (2m=1 )6

where

insi the jet
- V, inside the je

V i V,o outside the jet

Numerical results for the spanwise lift distribution obtained with a five
point collocation solution of the present systems of equations are shown in Fig, 2.
@

For these computations, the five points were taken according to the following

formula
/7 = -bz" cos fnz
10 m=1,2,3,4,5

and the remaining parameters were

Veo
Vi

Wing aspect ratio = 5

L 12
b

=,1735

The theoretical curves in Fig. 2 show, in essence, a comparison of the lift
increments due to the jet as computed by the various existing theories. In the
present analysis, this increment was computed by subtracting out the theoretical

®

lift for the wing in a uniform flow %obtained by using Glauert's lifting line theory.

The unusually high value for the maximum lift predicted with the present

theory as compared with that of Reference 13 reflects the effect of the difference

in the constants cited above, as well as a possible difference which may arise
&
from the respective methods of treating the equation. In Reference 13 two sine

series were employed in the expansion of [ , one applying outside the jet and
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2
the other inside the jet with a matching of the lift at the wing&et boundary. A
single sine series expansion was assumed for F in the present computations.
It should be noted further that the present lifting line analysis neglects
jet curvature effects, and, in addition, is based on the condition that \/J- is
not close to v'ao , more specifically, th:i VJ—O =VJ-’ Voo is of order \/ao .

The numerical computations,. however, have been carried out for

Vso
Voo

which is close to the range where wing effects to the second order in angle of attack

=.360

may be of importance.

In view of seemingly poor agreement with experimental data, it is at this
time difficult to justify the present method over previous analyses of the wing-
jet interaction problems. Nevertheless, it is felt that the present approach,
with the jet boundary, regarded as a free vortex sheet, affords a more realistic
model than does the image technique, as well as a better understanding of the
effects of the controlling parameters, i.e., jet deflection, curvature, etc.

* If the results of simple image theory of Reference 13 are to be recovered,
one is led to conclude that either Eq. (49), or the ensuing developri;lents leading
to Eq. (52), must be modified. This follows from the fact that the expression
for ‘6,‘ on the j(-;t boundary as given by Eq. (48) corresponds exactly to that
which is obtained with the flow fields from simple image analysis if—f—:’?‘f—— and

&_ are taken to be the mean deflections of the streamlines on the two sides
ofd;,?: elementary jet boundary. Equation (52) on the other hand cannot be so
reconciled. The need for further analysis is suggested in this area. In addition,
it is recommerfdgd that a more complete development in the lifting line approximation

L
be carried out to include the jet curvature effect® terms.
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- It should be stated that experimental data, more consistent with the

theoretical flow model than is at prﬁc}asent available, is required in the final correlation.
The ideal jet, which is usually assumed for simplicity of analysis, can perhaps best
be simulated in a wind tunnel by employ'ing drag screens20 ratﬁer than a propeller
whose wake, due to its characteristic: loading, is generally nonuniform. This

is, of course, not to lose track of the ultimate problem which pertains to a

real propeller and wing combination, but merely to test the ideal jet model. It

could well be that the realistic problem requires an even more elaborate model for

the propeller wake such as, for example, a series of concentric ideal jets,

L]

»
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